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Abstract: Equations permitting the application of Marcus theory to reactions with two, three, or four reaction coordinate
dimensions have been derived by analogy with the one-dimensional case. All of these equations are based on the
quartic approximation to the reaction coordinate;Gx ) ax2 + bx3 + cx4. The final equations require as input only
the energies of each corner intermediate and intrinsic barriers for each dimension. Computer programs have been
written to allow finding of the transition state, by numerical search of the high dimensional hyperspace. These
programs allow examination of potentially concerted reactions involving multiple processes. Numerical exploration
shows that the conditions which must be met for a transition state to involve more than one reaction coordinate
become increasingly stringent as the number increases, to the point that it is essentially impossible to have four
coordinates changing at once.

Introduction

Marcus1-3 developed a relationship between the free energy
of activation for a chemical reaction and the free energy change
for reaction within an encounter complex; this relationship
involved an intrinsic barrier, which described the difficulty of
bringing about reaction in the absence of a thermodynamic
barrier, and two “work terms”, the free energy costs of bringing
together reactants and products to the encounter complexes. The
intrinsic barrier may be interpreted as the activation energy for
reaction within an encounter complex when the free energy
change for chemical reaction is zero. The most commonly used
form of the Marcus equation is:

whereG̃ is the intrinsic barrier andwR, wP are the work terms
for starting material and product.
It has been shown4-8 that simple quadratic models of the

reaction coordinate diagram (intersecting parabolas or inverted
parabola) lead to the Marcus equation.
For extremely favorable or extremely unfavorable values of

∆G°, where the rate of reaction in either the forward or reverse
direction would become very fast, there is for all but strictly
unimolecular processes a change in the rate determining step
to either diffusional approach or separation or else solvent
relaxation. Thus in general one must use a three-step model,
such as Eigen introduced for proton transfer9 with the Marcus

equation describing only the second step. For the extreme cases
it is normally assumed10 for chemical reactions, as opposed to
electron transfer processes,11,12 that for the second step∆Gq )
0 for ∆G° < -4 G̃ and∆Gq ) ∆G° for ∆G° > 4G̃.
Kurz has shown that in terms of the inverted parabola model,

in which free energy is expressed as a function of position along
a bond order coordinate, which runs from 0 (starting material)
to 1 (product), the free energy is given by

and the position of the transition state is given byxq ) -R/2â
) 0.5+ ∆G°/8G̃ with

whereR ) ∆G° + 4G̃, â ) -4G̃, andy ) ∆G°/16G̃. If the
transition state is constrained to fall between 0 and 1, then the
limiting values for extremes of∆G° described in the preceding
paragraph are obtained automatically. For|∆G°| > 4G̃, xq will
lie outside the allowed range; if∆Gq is taken as the free energy
at the limiting value ofx, one gets the expected value.
A more realistic model of the reaction coordinate is provided

by a quartic equation,13-15 which has the correct shape at the
three points concerning which we have information, the initial,
final, and transition states. By contrast the inverted parabola
has the correct shape only at the transition state.

We have shown15 thata ) 16G̃ + 3∆G°, b ) -32G̃ - 2∆G°,
c ) 16G̃, xq ) -1 -3b/4c ) 0.5+ 3∆G°/32G̃, and

where y ) ∆G°/16G̃. Equation 4 does predict a slightly
different transition state position,x4q ) 0.5+ 3∆G°/32G̃, instead
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∆Gq ) G̃(1+ ∆G°/4G̃)2 (1)

∆Gq ) ∆Gq
obs- wR

∆G° ) ∆G°obs- wR + wP

G) Rx+ âx2 (2)

∆Gq ) G̃(1+ 8y+ 16y2) ) G̃(1+ 4y)2 (3)

G) ax2 + bx3 + cx4 (4)

∆Gq ) G̃(1+ 8y+ 18y2 - 27y4) (5)
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of the value from eq 2,x4q ) 0.5+ 4∆G°/32G̃, and the range
of applicability of eq 4 is|∆G°| > 16G̃/3. Within this range,
eq 4 gives values very similar to those given by eq 2.
In order to discuss concerted reactions, two-dimensional

versions of this treatment were derived, both in the quadratic16

and quartic15 approximations. This treatment has now been
extended to three- and four-dimensional versions, using the
quartic approximation. It will be shown that there are abundant
chemical examples which require this level of complexity, and
that the method can be conveniently applied.

Results

Two-Dimensional Systems.First the two-dimensional case
will be reviewed, and my treatment will be contrasted with that
of Grunwald.17 I have reported16 the two-dimensional free
energy equation in the quadratic approximation as:

in terms of bond energy coordinates (“edge coordinates”), or
after suitable transformation of coordinates as

in terms of progress (p) and disparity (q) coordinates, where
the “progress coordinate” measures the extent of reaction
proceeding directly from starting material to product, and the
“disparity coordinate” measures the extent to which the transition
state is displaced orthogonal to the “progress coordinate”; see
Figure 1.
Grunwald reported a slightly different equation; expressed

in terms of progress and disparity coordinates, his equation is:

whereGγ andGµ are used in place of Grunwald’sγ andµ to
avoid confusion with terms in (6) or (7). The most obvious
difference between eqs 7 and 8 is the absence in eq 8 of a term
in pq. In terms of eq 7 this can be seen to imply thatâ ) γ,
and in turn thatG̃x ) G̃y. Grunwald’s equation was derived to
characterize the region of the transition state, and not to describe
the entire energy surface. In fact, examination of eq 8 shows
that the energies of the “corner intermediates” in terms of this

equation involve both thermodynamic and intrinsic barrier terms.
Thus his equation cannot be correct in the vicinity of these
corners.
The quartic version of this energy surface has also been

reported,

where

This equation has been applied to elimination reactions,15 amide
hydrolysis,18,19 and ester alcoholysis.20

Although eq 9 provides an analytical expression for the energy
at any point on the reaction surface, it is algebraically intractable
if one tries to derive an analytical expression for the position
of the transition state. Since there is also the possibility that
the analytical solution for the transition state would correspond
to a forbidden region with one of the edge coordinates greater
than 1 or less than 0 (in which case the free energy of activation
would be at a limiting value for at least one dimension), the
analytical solution would not be a complete solution to the
problem in any case. Numerical solution is used instead and
can be applied to this case or the higher dimensional cases now
to be considered.
Three-Dimensional Version. It has been pointed out that

many reaction mechanisms require a reaction cube21-24 (Figure
2) for proper analysis, since three microscopic bond-making or
-breaking processes are involved in converting starting materials
to products. Cases of interest are the addition of nucleophiles
to carbonyl compounds in the presence of acidic and basic
catalysts,23

the water mediated proton switch, which has been found to be
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Figure 1. Two-dimensional reaction coordinate diagram.x andy are
the two edge coordinates;p is the progress coordinate, andq is the
disparity coordinate. (0,0) is the starting point, (1,1) is the product,
and (1,0) and (0,1) are the corner intermediates corresponding to
reaction along only one edge coordinate.

G) Rx+ âx2 + γy+ δy2 + εxy (6)

G) (R - â + γ + δ)p+ (R - â - γ - δ + ε)q+
(â + δ + ε)p2 + (â + δ - ε)q2 + 2(â - γ)pq+

(-2R + â + 2γ + δ - ε)/4 (7)

G) c+ 4Gγp(1- p) + p∆G° - 4Gµq(1- q) + q∆G′ (8)

G) a1x
2 + a2y

2 + a3x
3 + a4y

3 + a5x
4 + a6y

4 + a7x
2y3 +

a8x
3y2 + a9x

3y3 + a10x
2y2 (9)

a1 ) 16G̃x + 3(G10 - G00)

a2 ) 16G̃y + 3(G01 - G00)

a3 ) -32G̃x - 2(G10 - G00)

a4 ) -32G̃y - 2(G01 - G00)

a5 ) 16G̃x

a6 ) 16G̃y

a7 ) a8 ) -6(G11 - G10 - G01 + G00)

a9 ) 4(G11 - G10 - G01 + G00)

a10 ) 9(G11 - G10 - G01 + G00)
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important in various carbonyl reactions or proton exchange
processes,25

and the proton relay mechanism suggested26 for serine proteases:

Four-Dimensional Version. Some reactions clearly need
more than three reaction coordinates for a complete description.
One such was encountered in our analysis of amide hydrolysis
in basic solution,19where we considered possible concertedness

of a water mediated proton switch converting an anionic
tetrahedral intermediate into an anionic zwitterionic intermediate,
which would be expected to lose amine rapidly, possible
concerted with the proton switch. Since the proton switch alone
requires three progress variables, a four-dimensional reaction
hypercube is needed to analyze amide hydrolysis; see Figure
3.
Olefin epoxidation is generally considered to be a concerted

reaction,27,28which involves four progress variables: (1) transfer

of a proton between two oxygens; (2) nucleophilic attack by
oxygen on the carbon-carbon double bond; (3) nucleophilic

attack by carbon on the oxygen which is transferred; (4) cleavage
of the oxygen-oxygen bond.
Various fragmentation reactions would, if fully concerted,

require four or more progress variables. An example of
hydrazone epoxide fragmentation illustrates this (Scheme 1).
If the tosylhydrazone anion29 fragments in a single transition
state, then there are four bonds breaking in the process; if the
reaction involved two stages, first opening the epoxide to an
alkoxide ion intermediate which then fragmented, then for the
fragmentation transition state only three progress variables, and
a reaction cube, would be needed.
Hydration of carbonyl compounds has been suggested to

involve a cyclic process involving three water molecules, one
of which adds while the others act as shuttles for a proton so
that the zwitterionic intermediate can be avoided.30,31 With three

water molecules and a cyclic mechanism, there are four progress
variables, and analysis of the system requires a hypercube. Thus
there are abundant examples of reactions for which detailed
analysis of the mechanism to decide whether concerted paths
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221, 337-340.
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Figure 2. Three-dimensional reaction coordinate diagram.x, y, andz
are the three edge coordinates. (0,0,0) is the starting point; (1,1,1) is
the product; (1,0,0), (0,1,0), and (0,0,1) are the corner intermediates
corresponding to reaction along only one edge coordinate; and (1,1,0),
(1,0,1), and (0,1,1) are the corner intermediates corresponding to
reaction along two edge coordinates.

Figure 3. Four-dimensional reaction coordinate diagram.w, x, y, and
zare the four edge coordinates. (0,0,0,0) is the starting point; (1,1,1,1)
is the product; (1,0,0,0), (0,1,0,0), (0,0,1,0), and (0,0,0,1) are the corner
intermediates corresponding to reaction along only one edge coordinate;
(1,1,0,0), (1,0,1,0), (1,0,0,1), (0,1,1,0), (0,1,0,1), and (0,0,1,1) are the
corner intermediates corresponding to reaction along two edge coor-
dinates; and (1,1,1,0), (1,1,0,1), (1,0,1,1), and (0,1,1,1) are the corner
intermediates corresponding to reaction along three edge coordinates.

Scheme 1
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are likely to be favored will demand use of a four or even higher
dimensional hypercube.
Now it will be shown that the equations for these energy

hypersurfaces can be derived in straightforward fashion by
analogy with those derived for the two progress variable case,
and that with suitable computer programs which have been
written, it is possible to find the lowest possible transition state
separating reactants from products, provided only that the
necessary energies of “corner intermediates” and intrinsic
barriers for “edge reactions” are available. This can involve
significant effort, for there are two “corner intermediates” for a
two progress variable reaction square, six for a three progress
variable reaction cube, and 14 for a four progress variable
reaction hypercube.
Derivation. The equations to be presented for the reaction

hypersurfaces describing potentially concerted reactions follow
from four postulates.
1. Reactants are in equilibrium with starting material or

product at each point along each reaction coordinate. This is
one of the starting assumptions of transition state theory.
2. At each section through the reaction hypersurface for

which only one reaction coordinate changes, Marcus theory
will apply and will be determined by the initial and final
energies, and the intrinsic barrier for that coordinate. There
have been objections,32 based on theoretical arguments , to the
application of Marcus theory to many classes of organic
reactions. There seems to be abundant evidence10,33-37 that
Marcus theory meets the empirical test of working in the sense
of giving useful correlations and predictions. If Marcus theory
can be applied to organic reactions in general, then application
to a process involving partial reaction along a perpendicular
coordinate follows from postulate 1.
3. The intrinsic barrier for any reaction coordinate is

independent of theValues of the other reaction coordinates. This
is a necessary constraint if the equations are to be relatively
simple, and the amount of input data required to be manageably
small. This constraint is empirically supported.15,16,18-20

4. For any reaction coordinate chosen as progressVariable,
at fixedValues of the other cooordinates, the free energy will
be a quartic function of the progressVariable. This is a
frequently used assumption about the mathematical nature of
reaction coordinate diagrams.13-15 It then follows that∆Gq )
G̃(1 + 8y + 18y2 - 27y4), y ) ∆G°/16G̃; this is the form of
Marcus theory appropriate for quartic reaction surfaces.15

Given these postulates, the form of the equations follows.
The advantage of using a quartic rather than a quadratic model
is that it is more likely to have a realistic shape far from the
transition state than would the inverted parabola version of the
quadratic model. The quartic model is also likely to be more
realistic than the intersecting parabola model, which may be
accurate near the ends of the reaction coordinate, but is likely
to be too cusp-like at the transition state. This advantage comes
at the price of algebraic complexity which commonly precludes
analytical solutions.
A generalized form of the equation for the energy hypersur-

face will now be presented. In the Supplementary Appendix
there is a rigorous if somewhat tedious derivation of these
equations from the condition that any section of the hypersurface
must be a quartic and must obey the Marcus conditions. The

pattern of the terms makes it obvious how one could extend
the treatment to still higher dimensions. The numerical coef-
ficients ofΓ in the terms involvingn reaction dimensions are
given by (-1)i(3n-i)(2i), i ) 0, ...,n, and the numbers of terms
with the same numerical coefficients for a given set of reaction
dimensions are given by the coefficients in the binomial theorem
expansion for (a+ b)n. Thus there are two terms, inuj2uk3 and
uj3uk2, with coefficient-6Γjk, and six terms, inuj2uk2ul3um3, etc.,
with coefficient 36Γjklm

where

and

with δij being the Kronecker delta.
Finding the Transition State Position for a Potentially

Concerted Process.The transition state is constrained to lie
within the reaction square or cube or hypercube. The transition
state is by definition the highest energy point on the lowest

(32) Ritchie, C. D.; Kubisty, C.; Ting, G. Y.J. Am. Chem. Soc.1983,
105, 279-284.
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(37) Leussing, D. L.J. Org. Chem.1990, 55, 666-673.

G) ∑
i)1

N

{(16G̃i + 3Γi)ui
2 + (-32G̃i - 2Γi)ui

3 + 16G̃iui
4} +

∑
j)1

N-1

∑
k>j

N

{9Γjkuj
2uk

2 + ∑
h)1

h)2

(-6Γjk)uj
2+δ1huk

2+δ2h + 4Γjkuj
3uk

3} +

∑
j)1

N-2

∑
k>j

N-1

∑
l>k

N

{27Γjkluj
2uk

2ul
2 +

∑
h)1

h)3

(-18Γjkl)uj
2+δ1huk

2+δ2hul
2+δ3h +

∑
h)1

h)3

12Γjkluj
3-δ1huk

3-δ2hul
3-δ3h + (-8Γjkl)uj

3uk
3ul

3} +

∑
j)1

N-3

∑
k>j

N-2

∑
l>k

N-1

∑
m>l

N

{81Γjklmuj
2uk

2ul
2um

2 +

∑
h)1

h)4

(-54Γjklm)uj
2+δ1huk

2+δ2hul
2+δ3hum

2+δ4h +

∑
h)1

h)4

∑
g)2
g*h
g>h

g)4

36Γjklmuj
2+δ1h+δ1guk

2+δ2h+δ2gul
2+δ3h+δ3gum

2+δ4h+δ4g +

∑
h)1

h)4

(-24Γjklm)uj
3-δ1huk

3-δ2hul
3-δ3hum

3-δ4h +

16Γjklmuj
3uk

3ul
3um

3} + etc.

Γi ) Gδi1δi2δi3δi4...
- G0000...

Γjk ) ∑
h)0

h)1

∑
g)0

g)1

(-1)h+gGε1ε2...εi...εN

εi ) hδij + gδik

Γjkl ) ∑
h)0

h)1

∑
g)0

g)1

∑
f)0

f)1

-(-1)h+g+fGε1ε2...εi...εN

εi ) hδij + gδik + fδil

Γjklm ) ∑
h)0

h)1

∑
g)0

g)1

∑
f)0

f)1

∑
e)0

e)1

(-1)h+g+f+eGε1ε2...εi...εN

εi ) hδij + gδik + fδil + eδim
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energy path leading from initial to final state. To find transition
states, a set of computer programs were written which search
the reaction space, moving out in shells from the initial state;
see Figure 4. For each shell, points on a grid defined by polar
coordinates are examined; any point which is higher in energy
than accessible points both nearer and farther from the origin
is a candidate transition state. A further candidate, and the
highest energy candidate which need be considered, is the lowest
energy stepwise path, which proceeds by a series of edge
reactions. Accessible points are those which can be reached
by moving no more than one grid step in any coordinate from
the test point. Having found a set of candidate transition states,
they are sorted and then searched in ascending order of energy,
lowest first, to see if, first, there is a path to the final state which
never goes higher in energy; and second, if there is a path back
to the initial state which never goes higher in energy. This
search process is computationally intensive, so first one tests a
candidate on a relatively coarse grid, and only tests the
successful candidates with finer grids. Although the time
required depends on the exact nature of the surface, a four-
dimensional search will generally require on the order of 15-
30 min on a 50 MHz 486 based computer, but may require as
much as 12 h for a difficult case.44

As the number of dimensions increases, there is a rapidly
growing number of possible lower dimensional stepwise paths
from starting material to products. Since the concerted path
must be lower than any of the alternatives if the reaction is to
be concerted, the condition for a fully concerted reaction
becomes increasingly stringent as the dimensionality increases.
In the two-dimensional case, one is in effect asking if the
transition states for two processes along parallel reaction
coordinates, from starting material to an intermediate and from
an intermediate to product, can simultaneously be avoided by
way of a transition state lower than either. This is illustrated
in Figure 5, for the case∆Gx ) ∆Gy ) 15 kcal/mol,G̃x ) 9
kcal/mol,G̃x ) 1 kcal/mol. When only one intrinsic barrier is
substantial and the other is very small, as is the case for Figure
5, then a simple analysis is possible. If one projects the reaction
coordinate diagrams involving only the coordinate,x in this case,
with the high intrinsic barrier onto a one-dimensional reaction

coordinate diagram, as shown in Figure 5, and if there is a
crossover point for the limiting curves fory ) 0 andy ) 1
which is lower in energy than either of the simple transition
states by more thanG̃y, then the reaction will be concerted. If
the overall process is higher dimensional, then a similar
treatment can be applied, projecting all but one dimension onto
the one-dimensional reaction coordinate diagram corresponding
to the highest intrinisic barrier. Then the condition for a
concerted reaction depends on the effective barrier for the (N
- 1)-dimensional process, orthogonal to the reaction coordinate
with the high intrinsic barrier. Reaction along this (N - 1)-
dimensional process at the crossover point necessarily has no
thermodynamic driving force. This simple analysis, where the
overall transition state energy is the sum of the crossover energy
and the effective intrinsic barrier for the (N - 1)-dimensional
process perpendicular to the high intrinsic barrier process is only
valid if the (N- 1) perpendicular intrinsic barriers are all small.
If one or more are large, then the surface is too complicated
for this treatment.
It will now be demonstrated that, as the number of dimensions

rises, the conditions for fully concerted reaction become more
and more severe.38-40 For a fully symmetrical four-dimensional
system, a fully concerted process will havew* ) x* ) y* ) z*
) 0.5. One can derive an analytical expression for the activation
energy in the most symmetrical case, where all corner inter-
mediates have the same energy and∆Greaction) 0. Along any
edge, say theV coordinate, one can write an expression for the
energy

WhenV* ) 0.5, then

Substituting the expressions forb, c, andd in terms of∆GV°
andG̃V, one obtains

which is the energy of the transition state relative to the overall
origin. awill depend on the particular coordinate, but is simply
the energy of theV ) 0 end of the coordinate relative to the
overall origin. Thus if the coordinate of interest starts at the
origin, a ) 0, ∆GV° ) ∆Gcorner, andG* V)0.5 ) ∆Gcorner/2 +
G̃V. If the coordinate of interest ends at the product,a )
∆Gcorner, ∆GV° ) -∆Gcorner, andG* V)0.5 ) ∆Gcorner/2 + G̃V. If
the coordinate of interest proceeds from one corner intermediate
to another, thena) ∆Gcorner, ∆GV° ) 0, andG* V)0.5) ∆Gcorner

+ G̃V.
One can now systematically reduce dimensions until one gets

to the overall free energy of activation. The procedure provides
a convenient “back of the envelope” analysis in the two-
dimensional case where there is at most one large intrinsic
barrier: if the two reaction energy diagrams for parallel edge
coordinates cross at an energy lower than the two maxima, then
the concerted process, if one is allowed, will have an activation
energy given by this energy at the crossing point plus the
intrinsic barrier for the perpendicular coordinate. Provided that
this sum is less than either of edge reactions, the overall process
will be concerted. In more than two dimensions, this is not in
general a convenient method, because one has not a point of
crossing but a line or a surface of crossing.

(38) Bordwell, F. G.Acc. Chem. Res.1970, 3, 281-290.
(39) Bordwell, F. G.Acc. Chem. Res.1972, 5, 374-381.
(40) Dewar, M. J. S.J. Am. Chem. Soc.1984, 106, 209-219.

Figure 4. Spherical shells through the reaction hyperspace searched
by the program which finds transition states. At each point on the
spherical grid the energy at accessible points one step closer to starting
point or product is compared to the energy at the test point. If the test
point is higher than an accessible point closer to the origin and closer
to the product, then it is a candidate transition state and must be tested
to see if it is possible to find a path from starting point to product
which passes through it and never goes higher in energy.

G) a+ bV2 + cV3 + dV4

G* V)0.5) a+ b/4+ c/8+ d/16

G* V)0.5) a+ ∆GV°/2+ G̃V
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Now this process will be illustrated for a four-dimensional
reaction hypercube reaction diagram, as shown in Figure 6. Let
us start withw. There are eight edges of the hypercube parallel
to thew axis. The midpoints of these eight edges define an
xyzreaction cube. Proceeding as described above the energies
of these eight corners are:

The midpoints of the four edges of thexyzcube parallel to
thex axis define azy reaction plane. Proceeding as described
above, the energies of these four corners are:

Now we do the same process again to define thez reaction
diagram

Finally the overall energy is

Unless one of the intrinsic barriers is quite large (in which
case concerted reaction is impossible), the rate-determining
process for the best stepwise edge reaction will be the progres-
sion form one corner intermediate to another, with∆G* )
∆Gcorner + G̃V. For small intrinsic barriers, there will be
essentially no kinetic barrier for progression from starting point
to a corner intermediate, and by hypothesis all intermediates
have the same energy. If the intrinsic barriers are not all the
same, thenV will correspond to the smallest. Thus the condition
for a concerted reaction is that

or

If G̃w ) G̃x ) G̃y ) G̃z ) G̃, then the condition is∆Gcorner>
24G̃. This is a severe condition and will normally prevent fully
concerted processes. In fact, there is an even more severe
constraint, because of the possibility of a semiconcerted path,
involving two successive two-dimensional processes, which
under the assumed conditions have the same activation energy.
If this alternative process has a lower activation energy than
the fully concerted process, then this semiconcerted process will
be preferred. The algebraic solution for the two-dimensional
process is not practical in the quartic approximation; in the
quadratic approximation analytical solution is possible16 and
leads to a transition state energy of (∆Gcorner+ 4G̃)2/(∆Gcorner

+ 8G̃) which for smallG̃ can be less than∆Gcorner + G̃, the
transition state energy for the one-dimensional alternative.
This derivation is for an artificially simple reaction scheme,

but suffices to show that there are severe constraints limiting
concerted processes of high dimensionality, unless the corner
intermediates are high in energy relative to the intrinsic barrier.

Figure 5. Simple analysis for the two dimensional case. (a) Reaction surface for the case∆Greaction) -10 kcal/mol,∆Gx ) ∆Gy ) 15 kcal/mol,
G̃x )9 kcal/mol,G̃y ) 1 kcal/mol. (b) Projection of the surface in (a) along they-coordinate. The lines fory ) 0 andy ) 1 are heavier; these lines
cross atx ) x*. For x ) x*, the free energy change along they-coordinate is 0.0, so the additional activation barrier, above the crossover point,
is G̃y ) 1 kcal/mol. In this case the concerted path is favored, because it is possible to avoid the maxima on both of the limiting reaction paths (y
) 0, andy ) 1).

Figure 6. Analysis for the special case of a four-dimensional reaction
path where all corner energies are equal,∆Greaction) 0, and all intrinsic
barriers are equal and small. (a) Section through the hypercube atw)
0.5. (b) The reaction cube corresponding to the section through the
hypercube from (a), with a section drawn atx ) 0.5. (c) The reaction
square corresponding to the section through the cube from (b), with a
section drawn aty) 0.5. The overall transition state will be atz) 0.5
on the corresponding one-dimensional reaction coordinate diagram.

G0.5,0,0,0) ∆Gcorner/2

G0.5,1,0,0) G0.5,0,1,0) G0.5,0,0,1) G0.5,1,1,0) G0.5,1,0,1)
G0.5,0,1,1) ∆Gcorner+ G̃w

G0.5,1,1,1) 0

G0.5,0.5,0,0) G0.5,0.5,1,1) ∆Gcorner/2+ G̃w +
∆Gcorner/4+ G̃x ) 3∆Gcorner/4+ G̃w + G̃x

G0.5,0.5,1,0) G0.5,0.5,0,1) ∆Gcorner+ G̃w + G̃x

G0.5,0.5,0.5,0) G0.5,0.5,0.5,1) 3∆Gcorner/4+ G̃w + G̃x +
∆Gcorner/8+ G̃y ) 7∆Gcorner/8+ G̃w + G̃x + G̃y

G0.5,0.5,0.5,0.5) 7∆Gcorner/8+ G̃w + G̃x + G̃y+ G̃z

7∆Gcorner/8+ G̃w + G̃x + G̃y+ G̃z < ∆Gcorner+ G̃V

G̃w + G̃x + G̃y+ G̃z< ∆Gcorner/8+ G̃V
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Thus fully concerted reactions either involve very low intrinsic
barriers or are inherently slow.
At each stage the crossover energy must be lower than either

of the simple transition states by more than the sum of the
intrinsic barriers for the perpendicular dimensions. These
conditions are very severe and, in fact, make it unlikely for
real processes to be synchronously concerted in four or more
dimensions, and any that are will be inherently slow because
of the requirement for high energy corner intermediates to give
an adequate gap. The condition is still severe for three-
dimensional processes, but much less so for two-dimensional
processes. This shows that our four postulates necessarily imply
that “multibond reactions cannot normally be synchronous” as
Dewar has argued from quite different grounds.40

In numerical exploration of the consequences of the equations
derived above, it has been found that it is indeed possible to
have synchronous four-dimensional processes, but either the
intrinsic barriers must be very low, or the corner intermediates
must be high in energy and the overall process slow.

Discussion

The procedures described above have been applied to a
number of reaction systems to be reported separately: examining
cyclic concerted proton transfer processes,25 hydration of
carbonyl compounds,41 hydrolysis of benzoyl chloride,42 and
hydrolysis ofN-methylformanilide.43 This has been found to
be a useful procedure for determining both the energy and nature
of the transition state when suitable input information is
available.
Numerical exploration of the nature of the hypersurface shows

that very often one or more of the possible reaction dimensions
is 0 or 1 at the transition state; i.e., the reaction is less concerted
than it might be, and the reaction hypersurface could be reduced
in dimensionality. In some cases, notably water mediated proton
switch reactions,25 the preferred reaction path often involves a
series of stepwise processes, each involving only one reaction
dimension. A great virtue of the approach reported above is
that the calculation performed to look for a concerted process
can give the result that the process is not concerted. In cases
where there was independent evidence concerning the concerted
nature of the preferred reaction path, our approach led to
consistent predictions of concerted transition states.15,20

Reactions will be characterized as fully concerted if all
reaction coordinates have values near 0.5 at the transition state.
Reactions for which all reaction coordinates are changing at
the transition state, but some are far from 0.5, are described as
nonsynchronous concerted. If one or more of the reaction
coordinates are either 0 or 1 at the transition state, then the
transition state is of reduced dimensionality. If only one reaction
coordinate is changing at the transition state, then one has an
edge reaction.
In the 2D case with∆Greaction) 0.0 kcal/mol, and∆G for

the corner intermediates) 25 kcal/mol, then with both intrinsic
barriers the same it is possible to get fully concerted reactions
with G̃x ) G̃y e 7 kcal/mol, but only edge reaction for larger
intrinsic barriers. If one of the intrinsic barriers is always 1,
then fully concerted reactions are found forG̃x e 44 kcal/mol.
If the overall driving force for the reaction is increased by
making∆Greaction) -10.0 kcal/mol, then with both intrinsic

barriers the same we find that fully concerted reactions occur
with G̃x ) G̃y e 7 kcal/mol, but only edge reaction for larger
intrinsic barriers. If one of the intrinsic barriers is always 1,
then concerted reactions are found forG̃x e 29 kcal/mol, with
edge reactions for larger intrinisc barriers. The concerted
reactions have both reaction coordinates in the range 0.4-0.6
for G̃x e 20 kcal/mol, but are increasingly nonsynchronous for
larger intrinsic barriers. With∆G for the corner intermediates
) 15 kcal/mol, the pattern is very similar, except that concerted
reactions are only found for smaller intrinsic barriers. These
calculations are summarized in Table 1.
In the 3D case with∆Greaction) 0.0 kcal/mol, and∆G for all

corner intermediates) 25 kcal/mol, fully concerted reactions
occur withG̃x ) G̃y ) G̃z e 3 kcal/mol, and edge reactions for
larger intrinsic barriers. With all but one of the intrinsic barriers
) 1, fully concerted reactions are found withG̃x ) e4 kcal/
mol, but essentially 2D concerted reaction for intrinsic barriers
>4 but <10 kcal/mol, and edge reaction for larger intrinsic
barriers. If the overall driving force for the reaction is increased
by making∆Greaction) -10.0 kcal/mol, then with two of the
intrinsic barriers always 1 kcal/mol, fully concerted reactions
are found forG̃x e 5 kcal/mol, nonsynchronous concerted
reactions are found for 6e G̃x e 10 kcal/mol, and edge reactions
for larger intrinisc barriers. With∆G for the corner intermedi-
ates) 15 kcal/mol, the pattern is very similar, except that
concerted reactions are only found for smaller intrinsic barriers.
These calculations are summarized in Table 2.
Likewise in the 4D case, with∆Greaction) 0.0 kcal/mol,∆G

for all corner intermediates) 25 kcal/mol, and all intrinsic

(41) Guthrie, J. P. To be submitted for publication.
(42) Guthrie, J. P. To be submitted for publication.
(43) Guthrie, J. P.Can. J. Chem.1993, 71, 2109-2122.
(44) The source code for these FORTRAN programs is available from

the author: please send an MS-DOS formatted disk, 31/2" or 51/4". The
executable forms of these programs are large, 0.5, 0.6, and 1.1 MByte,
and require Windows 3.x or a memory manager.

Table 1. Two-Dimensional Case: Relation of the Nature of the
Transition State to the Overall Free Energy Change and the Intrinsic
Barriers

corner
energy ∆Greaction G̃x G̃y

nature of the
transition state

25 0 e7 ) e7 fully concerted
25 0 >7 ) >7 edge
25 0 e44 1 fully concerted
25 0 g45 1 edge
25 -10 e7 ) e7 fully concerted
25 -10 >7 ) >7 edge
25 -10 e28 fully concerted
25 -10 29 1 nonsynchronous concerted
25 -10 g30 1 edge
15 0 e15 1 fully concerted
15 0 g16 1 edge
15 -10 e5 ) e5 fully concerted
15 -10 >5 ) >5 edge
15 -10 e10 1 fully concerted
15 -10 11e, e13 1 nonsynchronous concerted
15 -10 >14 1 edge

Table 2. Three-Dimensional Case: Relation of the Nature of the
Transition State to the Overall Free Energy Change and the Intrinsic
Barriers

corner
energy ∆Greaction G̃x G̃y G̃z

nature of the
transition state

25 0 e3 ) e3 ) e3 fully concerted
25 0 g4 ) g4 ) g4 edge
25 0 e4 1 1 fully concerted
25 0 5e, e9 1 1 essentially 2D
25 0 g10 1 1 edge
25 -10 e5 1 1 fully concerted
25 -10 6e, e10 1 1 nonsynchronous concerted
25 -10 g11 1 1 edge
15 0 e1 1 1 fully concerted
15 0 g2 1 1 edge
15 -10 e3 1 1 fully concerted
15 -10 4e, e7 1 1 nonsynchronous concerted
15 -10 g8 1 1 edge

12884 J. Am. Chem. Soc., Vol. 118, No. 51, 1996 Guthrie



barriers the same, fully concerted reactions are only found with
G̃w ) G̃x ) G̃y ) G̃z e 0.01 kcal/mol; 2D concerted reaction
are found for intrinsic barriers of 1 or 2 kcal/mol, and edge
reactions for larger intrinsic barriers. If all but one of the
intrinsic barriers were 1 kcal/mol, then withG̃w ) 1 kcal/mol,
the reaction is essentially 3D, withG̃w ) 2 kcal/mol the reaction

is essentially 2D, and with largerG̃w edge reactions are found.
If the overall driving force for the reaction is increased by
making ∆Greaction ) -20.0 kcal/mol, then with three of the
intrinsic barriers always 1 kcal/mol, fully concerted reactions
are found forG̃w ) 1 kcal/mol, nonsynchronous concerted
reactions are found forG̃w ) 2 kcal/mol, and edge reactions
for larger intrinisc barriers. With∆Greaction) -20.0 kcal/mol,
the effect of increasing the corner energies was explored to see
if fully concerted reactions would be found with one intrinsic
barrier in the range found for heavy atom bond forming
reactions. As Table 3 shows such concerted reactions could
be found but only for high corner energies.
Thus what is found is that fully synchronous concerted

processes only occur for high-dimensional processes when the
intrinsic barriers are all very low, or when the reaction is so
slow as to be of no practical significance. Fully concerted
processes in two-dimensonal reactions are much more common.
Thus one expects that the vast majority of reactions which seem
to demand a three- or four-dimensional reaction diagram will
have at most two reaction coordinates changing at the transition
state, a few will have three reaction coordinates changing at
the transition state, and none will have four or more reaction
coordinates changing at the transition state. This has been
proposed before,38-40 but it has not previously been recognized
that it is a necessary consequence of the simple postulates stated
above.
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Table 3. Four-Dimensional Case: Relation of the Nature of the
Transition State to the Overall Free Energy Change and the Intrinsic
Barriers

corner
energy∆Greaction G̃w G̃x G̃y G̃z

nature of the
transition state

25 0 0.01 0.01 0.01 0.01 concerted
25 0 1e, e2) 1e, e2) 1e, e2) 1e, e2 essentially 2D
25 0 g3 g3 g3 g3 edge
25 0 1 1 1 1 essentially 3D
25 0 2 1 1 1 2D
25 0 g3 1 1 1 edge
25 -20 1 1 1 1 fully concerted
25 -20 2 1 1 1 nonsynchronous

concerted
25 -20 g3 1 1 1 edge
35 -20 1 1 1 1 fully concerted
35 -20 2e, e3 1 1 1 nonsynchronous

concerted
35 -20 g4 1 1 1 edge
45 -20 e2 1 1 1 fully concerted
45 -20 3e, e4 1 1 1 nonsynchronous

concerted
45 -20 g5 1 1 1 edge
55 -20 e2 1 1 1 fully concerted
55 -20 3e, e6 1 1 1 nonsynchronous

concerted
55 -20 g7 1 1 1 edge
65 -20 e3 1 1 1 fully concerted
65 -20 4e, e7 1 1 1 nonsynchronous

concerted
65 -20 g8 1 1 1 edge
75 -20 e3 1 1 1 fully concerted
75 -20 4e, e9 1 1 1 nonsynchronous

concerted
75 -20 g10 1 1 1 edge
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